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J .  Phys.: Condens. Matter 2 (1990) 6807-6836. Printed in the UK 

The simultaneous measurement of optical activity and 
circular dichroism in birefringent linearly dichroic 
crystal sections: I. Introduction and description of the 
method 

J R L Moxon and A R Renshaw 
Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK 

Received 31 August 1989 

Abstract. The ‘HAUP’ method, described by Kobayashi and Uesu, for the measurement of 
optical activity in birefringent crystals is extended to include dichroic effects and analysed 
qualitatively in a novel way using intensity contour maps. The elimination of the parasitic 
ellipticities of the polariser and analyser is achieved by repeating the measurement in a 
second crystal setting, rather than physically exchanging the prisms, which has been reported 
as unworkable. 

1. Introduction 

There has been a renewed interest in understanding optical rotatory dispersion (ORD) 
and circular dichroism (CD) in solids, especially in new inorganic electro-optic materials, 
for two reasons: firstly because of the relationship between these effects and electronic 
polarisability (Reijnhart 1970, Glazer and Stadnicka 1986, Devarajan and Glazer 1986); 
and secondly because of a fundamental interest in wave propagation in anisotropic and 
bi-anisotropic chiral media (Lakhtakia 1985, Puri and Birman 1981 , Kong 1974) and the 
phenomenological description of the frequency and spatial dispersion of the dielectric 
tensor (Eimerl(l988), following Voigt (1903 , 1905), Wever (1920) , Szivessy and Miins- 
ter (1934)). These latter studies have been particularly concerned with propagation in 
the presence of both linear and circular differential wave optic parameters. 

Measuring optical activity and circular dichroism in birefringent linearly dichroic 
sections is difficult because the linear birefringence is typically 1 0 0 0 ~  larger than either 
of the circular effects. In terms of superposition principles, this means that the intro- 
duction of a circular birefringence into an otherwise purely linear birefringence causes 
the two linear eigen-modes to become very slightly elliptical. The introduction of circular 
dichroism causes these two modes to depart from mutual orthogonality. The effects of 
linear dichroism, crystal imperfections, surface roughness, instrumental setting errors, 
polariser and compensator errors, finite bandwidth and beam divergence all contribute 
to further systematic errors. It is no surprise therefore that the earliest attempts at 
measurement of optical activity in a birefringent crystal section (Beaulard 1893 , Szivessy 
and Schweers 1929) failed to obtain a consistent value for the ellipticity, and relatively 
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Figure 1. The basic polarimetry experiment on an elliptically birefringent sample using the 
notation of Szivessy and Munster (1934). 

few subsequent papers have analysed the effects of imperfect optical components, 
detection systems or mechanical calibration. 

In this paper we calculate the effects of linear and circular birefringence (LB, CB), 
and linear and circular dichroism (LD, CD), in a polariser-specimen-analyser (BA) 
photometric polarimeter with imperfect components, and show how these effects can 
be measured. We plan to present following papers discussing experimental applications. 

In order to understand the concepts underlying our method, we first review some of 
the earlier work. 

1.1. Optical activity 

1.1.2. Szivessy and Munster (2934). The basis of all methods for measuring the optical 
activity in birefringent sections is to infer the ellipticity of the normal waves, k ,  from the 
polarisation state of the beam emergent from the crystal, and relate this to the scalar 
parameter of gyration. The geometry and notation of Szivessy and Munster are shown 
in figure 1. 

Before the advent of reliable linear electrophotometry, null methods (in which 
instrument settings that minimise the transmitted intensity are sought) were the only 
viable technique. Hence Szivessy and Munster analysed the emergent beam using a 
modified SCnarmont method (Ramachandran and Ramaseshan 1961). k was then 
derived from expressions relating these settings to k as a function of a and p. (/3 is 
the orientation of the indicatrix relative to the propagation direction.) They focussed 
attention on three ‘special’ values of a that give rise to emergent states that can be 
particularly easily identified by null polarimetry. Diagrams of these settings are shown 
in figure 2, and the equations that relate them to k and A are indicated in table 1. 

Szivessy and Munster proposed various methods for getting k ,  each of which has 
special advantages at different values of a and p.  The methods fall into two groups; one 
in which A ,  the phase difference was measured externally by a compensator, and one in 
which it was determined implicitly by the simultaneous determination of two of the 
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Figure 2. Diagrams showing the apparatus configuration for the three special settings in 
Szivessy and Munster (1934)-the upper, middle and lower panels show the linear, minimal 
and symmetry azimuths respectively. 

special azimuths, and their corresponding output states. In each case they derived an 
expression for k in terms of the value of the special azimuth concerned, or in terms of 
the azimuth and ellipticity of the corresponding emergent state. For example, the 
expression for the 'linear azimuth' A was inverted particularly easily to give 

k = (tan Af2 k d tan2A/2  - tan22A)/tan 2A. 



6810 J R L Moxon and A R Renshaw 

a 

t 
B 
* + 
n 

4 
I 
i V 

a 
c 
! 
i 

0 
II 
3. 



Optical activity and circular dichroism: I 6811 

Some of the methods lost the sign of k, and hence could only be used to derive its 
magnitude. They listed five workable methods, discarding those that have an inherently 
low sensitivity fork. 

Using an externally measured A and one azimuth: 
~ ~~ 

Measured quantities Derived quantity 

k 
k 

Using two azimuths: 

Measured quantities Derived quantity 

All the other measurement methods could be related to this framework; below we shall 
make a graphical comparison of the most important, indicating the role of these special 
crystal settings. 

1.1.2. Bruhatand Grivet (1935). Bruhat and Grivet used the (q ,  q,) method of Szivessy 
and Munster with the help of newer technology in the form of a photomultiplier tube 
and an electrically modulated version of the half-shade. Besides corroborating Szivessy 
and Munster’s results, they were able to explain the previous failure of Szivessy and 
Schweers and Beaulard as being caused by errors in the determination of A due to too 
large a bandwidth in the light source. Bruhat and Grivet rejected Szivessy and Schweer’s 
explanation in terms of beam divergence and sample misalignment, and performed 
calculations to show that they could not cause errors of the order of magnitude of those 
actually encountered, and so introduced a much more quantitative treatment of the 
many systematic errors besetting such experiments. They did not however discuss the 
effects of errors in the vital optical components of their apparatus. They noted that the 
theories of Voigt predicted a l / A 2  dispersion law for the optical activity even in a 
birefringent section, and so made a particular point of taking measurements from250 nm 
in the ultraviolet through the visible range using the many lines of a Mercury vapour 
lamp. They also noted that an electronic detection system could in principle be used to 
make a photometric determination of the optical activity. They gave expressions to show 
how k could be derived from least-squares refinement of the intensity as a function of 
various angles in the system. However, they rejected the technique because of the limits 
of their detection system. This idea was explicitly taken up by Kobayashi and Uesu 
(1983). 

1.1.3. Konstantinoua et a1 (1969). Konstantinova’s analysis and measurement method 
were reported after more than 30 years of silence in the publications. Her method was 
to use a new crystal azimuth which we shall call the crystallographic zero azimuth, in 
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which the crystal axes (and hence the principal axes of the indicatrix) were exactly 
aligned with the polarisation direction of the polariser. In this case, the emergent state 
is elliptical, and its azimuth deviates from that of the input state. Instead of measuring 
the phase, use was made of bright Hg or Xe broad-band high-pressure arc lamps, 
and an automatically controlled grating monochromator to scan the wavelength, thus 
'washing out' the phase dependency, and revealing a fringe pattern dependent on the 
order of the crystal. The azimuth of the emergent state oscillates about that of the input 
state with A, and is given by an expression very similar to that of the linear azimuth A 
of Szivessy and Munster: 

tan(2q) = -2k sin(A) tan(?)) = 3 k(1 - cos(A)). 

The alignment was not attempted by x-ray methods, but simply by adjusting the crystal 
azimuth until these oscillations with phase were evenly distributed about the zero 
position when the wavelength was scanned. Because the system was self-aligning, little 
attention was paid to errors in the optical components. However, the authors made 
a seminal observation that the envelope of the dispersively decaying sine wave was 
noticeably different when the crystal was rotated by 90" from its original azimuth (figure 
3.) They made the following observation: 

'It is evident that the values of x [q in our notation] for these cases do not coincide. 
Apparently this difference is connected to some kind of additional ellipticity which 
has not been successfully eliminated.' 

f6 

8 

0 

-8 

- /6 

Figure 3. The anomalous result for the 
wavelength dependence of the emergent 
azimuth observed by Konstantinova et a1 
(1969), showing a difference between the 
two crystal settings (separated by 90"). 

Our analysis below shows that these errors are the ellipticities of the polariser and 
analyser, and that the different values of emergent beam azimuth for different quadrant 
positions of the crystal can be exactly predicted. We utilise this knowledge to eliminate 
their effect. Konstantinova's method has been widely used, notably by Ivanov and 
Konstantinova (1970), Ivanov and Chikhladze (1976), Kaminskii et a1 (1983), Oko- 
rochkov et a1 (1984), Vlokh et a1 (1986) 

1.1.4.  Anderson et a1 (1974). This method was the first published genuinely photometric 
method of optical activity determination in birefringent sections. The authors took an 
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expression derived by Voigt and noted by Szivessy and Munster for the transmitted 
intensity at the crystallographic zero azimuth: 

J = Jo[k2 / (1  + I c ’ ) ~ ]  sin2(A/2). 

Following Konstantinova, they therefore scanned this intensity with wavelength and 
picked out the extreme values to show the dispersion of k2. This method relies on the 
use of a beam splitter to correctly relate J o  and J .  Anderson et a1 obtained results for 
AgGaS2, which has quite large ellipticity values, and did so to follow up the work of 
Hobden (1968), who had made a measurement at the special zero-crossing wavelength 
in AgGaS2 at which the linear birefringence was accidentally zero. The technique was 
used again by Kobayashi et al( l978)  on the more difficult sample of a-quartz with the 
improved technology of a photon detection system to deal better with the very low light 
levels. In neither of these papers were any of the optical component and other systematic 
errors dealt with. 

1.1.5. Horinaka eta1 (1980,1985). The difficulty of correctly relating the measurements 
J o  and J in the above method was overcome in a modulated experiment, in which the 
normalisation was achieved by the division of the 2w and the 4w Fourier components. 
The modulator can be a rotating phase plate or electro-optic retarder. Scanning with 
wavelength is still necessary, however, since the 2 0  signal is oscillatory with phase. The 
good signal-to-noise ratios available in modulated experiments (Aspnes 1973, Azzam 
1978) allowed these authors to move from the relatively ‘easy’ case of AgGaAs2 in their 
1980 paper ( k  is relatively large) to the more difficult a-quartz (Horinaka et a1 1985), 
and get results that compared favourably with those of Bruhat and Grivet. Horinaka 
used the coherency matrix formulation in calculating the Fourier coefficients. 

The coherency matrix of the transmitted beam and its intensity are: 

pf = M,M,M,p,M,+M&Mf; I = Tr(pf) = IZw + 14@ 
where A ,  M and S mean analyser, modulator and sample, respectively, and the 2 0  and 
4w Fourier components are: 

I Z w  = Io[k  - ( k 2  + 02)1/2 cos(b + c)] sin a 14w = (10/2) sin2(a/2) 
where a is the phase angle of the modulator. The wavelength-averaged 2 0  signal is 
written as 

(12w)A = Iok sin(&) 

leading to a sign-indeterminate value for k :  

k = 4 tan(a/2)(12w)A/14w. 

Modulated methods had been discussed and used in both reflection and transmission 
ellipsometry considerably before this publication (see Aspnes 1973, Pancharatnam 
1955), but it seems that Horinaka’s was the first application to the measurement of 
optical activity in birefringent sections. 

1.1.6. Kobayashi and Uesu (1983). This publication was important on two accounts. 
First, it used a suggestion of Bruhat and Grivet that kcould be derived from least-squares 
refinement of the intensity as a function of various angles in the system given a linear 
and sensitive enough detection system. Secondly, it explicitly took into account the 
ellipticity errors of the polariser and analyser, suggesting that these alone could com- 
pletely mask the normal-mode ellipticity sought. Kobayashi et a1 made the important 
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Kobayashi analysis by the introduction of the 
polariser and analyser errors and a general ana- 
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observation that, if such errors must be taken into the analysis in order to eliminate them 
somehow, then the number of extra components, such as modulators, beam splitters, 
windows, and compensators, had to be kept to an absolute minimum, for computational 
reasons. The authors also followed Bruhat and Grivet in using a plane-geometric 
approximation on a small area of the PoincarC sphere. Figure 4 indicates their coordinate 
system; figure 5 shows the spherical trigonometric basis of Kobayashi’s adaptation of 
Bruhat and Grivet’s calculation leading to a bi-quadratic expression for the intensity in 
the angles Y and 8: 

r(e, Y,  P ,  4) = A ( &  P ,  4)  + W , P ,  q)y + y2 
(where A ,  B are both quadratic in e). 
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They collected the intensity data in Y-strips to find B as a function of 8’. 8’ = 0 is at 
Szivessy and Munster’s minimal azimuth. This transformation has the effect of grouping 
the p and q error terms into occurrences of y = (p - q) ,  which can be eliminated 
in principle by physically exchanging the polariser and analyser and repeating the 
experiment. Since 

B(8’ ,p ,  q )  = -(2k - y )  sin(A) + 4 sin2(A/2)8’ 

defines a straight line, the normal-mode ellipticity, k ,  can be extracted from the intercept 
in conjunction with a knowledge of A extracted from the gradient. This technique, with 
various modifications, has been applied successfully by Kobayashi et a1 (1983, 1984, 
1985,1986a7 1987,1988) and Saito et al(l985,1987). 

1.2. Circular dichroism 

The corresponding difficulties in measuring circular dichroism in birefringent sections, 
and in the presence of other optical effects, have been investigated much more recently. 
The circular dichroism, while defined as a difference in absorption coefficients for 
circular reference states, does have an effect on the polarisation states of the normal 
waves in the crystal (causing the major axes of the elliptical states to depart slightly from 
mutual orthogonality, and their ellipticities to diverge). Hence the effect could be 
determined polarimetrically, as we shall show below, and determined along with the 
optical activity and other effects. However, the main attempts at these measurements 
have been performed using the modulating dichrograph routinely used in chemical 
analysis of liquids and gases. Here the difference in absorption itself is measured by 
switching rapidly between R and L polarisation and Fourier analysing the resulting signal. 

1.2.1. Castario (1 969) observed that for some of the non-centrosymmetric point groups, 
rotational tensor averages do not disappear. He therefore compared the results for optic 
axis dichroism with those for a powder sample, and knowing the relationship of the 
tensor average to the two independent components in the particular case, was able to 
infer the component of circular dichroism perpendicular to the optic axis. The technique, 
however, is not general, since it relies on a relationship that is only true for certain of 
the optically active point groups. 

1.2.2. Perekalina eta1 (1977) worked on the single-crystal experiment and addressed the 
problem of exactly what goes wrong in the operation of a normal modulated dichrograph 
if the sample is a birefringent single-crystal section. The problem arises because of the 
sinusoidal modulation between the R and L states. As soon as there is any net linear 
component to the incident polarisation state (as the electro-optic modulator is switch- 
ing), then the wave optics in the crystal differ from the linearly isotropic case, and the 
Fourier components in the final signal are altered. They proposed modifications to both 
the instrument and the interpretation of the data in order to extract the true value of the 
CD . 

1.2.3. Baturin et a1 (1 983) noted that even the optical rotation, which would always occur 
together with the dichroism, and would begin to have significant values away from the 
centre of the dichroism band, causes similar errors in modulated dichrograph operation. 

It seems therefore that the polarimetric approach to circular dichroism has not yet 
been investigated. 
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1.3. Linear dichroism 

Most transparent birefringent materials are deemed to be ‘non-linearly dichroic’ and a 
common criterion, especially in the mineralogical literature, is simply visible pleochro- 
ism. Several of the purely theoretical papers (Konstantinova et a1 1969, Grechushnikov 
et a1 1980) derived the linear dichroism terms, but only in very few papers do we find 
mention of the need to take them into account in particular experiments. Baturina et a1 
(1985) noted that all crystal imperfections and surface roughness will give an apparent 
linear dichroism, and appear to affect the intrinsic wave optics of the specimen. Chetkin 
et a1 (1979) noted the problem in Faraday effect measurement in orthoferrites and we 
consider it important to include it in our own analysis. 

1.4. Integrated or universal techniques 

Simultaneous extraction of all the differential wave optical effects has been considered 
by Raab (1982), in a purely theoretical paper, along the lines of a generalised version of 
the dichrograph experiment. He proposed a number of pairs of related input and analyser 
polarisation states from which to measure intensity differentials. The approach is difficult 
for a number of reasons, not least because of the need for wavelength-independent 
circular polarisers and analysers. Henty and Jerrard (1976) claimed the development of 
a ‘universal’ ellipsometer and used it to make simultaneous measurements of ORD and 
CD in dextrorotatory tris-(ethylenediamine) cobalt I11 iodide monohydrate. They used 
Faraday modulation and a split emergent beam with two separate analysing units; 
however, the apparatus was designed for isotropic media only and so would not function 
in birefringent crystal sections without considerable adaptation. 

We will now develop our ‘universal’ treatment from Kobayashi’s analysis. Insights 
into the role of various systematic errors and other wave-optical effects are then applied 
to the modulated technique of Horinaka et a1 (1980,1985). 

2. Calculations for the transmitted intensity 

We have used the Jones (1948) calculus, and, following Wyant (1981), asymbolic algebra 
system (Hearn 1985) for all our calculations, and so we make a variety of controlled 
approximations. The basic premise of the Jones method is that an input polarisation 
state, represented by a column vector Ji, is mapped into an output state Jr by a 2 X 2 
matrix called the M matrix for the system. The four coefficients of M may each be 
complex, so there are a total of eight parameters that describe the crystal as an optical 
system. Six of these parameters may be chosen according to table 2. The remaining two 
parameters describe the orientation of the crystal relative to the coordinate axes. For a 
completely general ‘optical black box’, or a biaxial crystal, two angles would be needed: 
one to locate the special directions for linear birefringence, and one for the corresponding 
special directions for linear dichroism. In a uniaxial crystal, symmetry demands that 
these special directions coincide, and so the orientation of the crystal is described by just 
one angle-the angle the fast axis makes with the x direction. 
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Table 2. Wave-optic parameters following Jones (1948). Note that the 6 used here is half of 
that used by Nye (1985). Jones originally defined p as positive for laevo-rotatory crystals, 
contrary to the current widely accepted definition followed here. 

Effect Description Definition 

Refraction n is the (real part of the) mean of the refractive 2n 
A. 

Absorption k is the mean extinction coefficient (imaginary 2n 
A 

n 

U = - n  indices of the two eigenmodes 

part of the mean refractive index) K = - k  

Linear ny - n, is the difference between the principal 
birefringence refractive indices for linear polarisation states = - A. - 4) 

Linear dichroism k, - k, is the difference between the principal 
extinction coefficients for linear polarisation E = - A. (ky - ' 1 )  

states 

birefringence for dextro-rotatory crystals) P = - ( n L - n R )  A. 

n 

Circular nL - nR is the circular birefringence (positive JC 

(optical activity) 

Circular 
dichroism coefficients for L and R circularly polarised light = ( k L  - 'R) 

kL - k ,  is the difference between the extinction n 

2.1 .  The form of the M matrix for some special cases 

The general form of the M matrix when the x axis is coincident with the fast axis in a 
(uniaxial) crystal is 

1 cosh QZ + [ ( E  + i6)/Q] sinh QZ 

[ - ( p  + iu)/Q] sinh QZ 

[ ( p  + ia)/Q] sinh QZ 

cosh QZ - [ ( E  + id)/Q] sinh QZ 
M = e ( - K  - i'Jb 

where Q2 = ( E  + 
takes the simple form. 

- ( p  + and z is the crystal thickness. 
When there is no dichroism, the quantity Q is wholly imaginary and the matrix M 

r 7 

L _I 
where cp = .\/S2 + p2.  This describes a birefringent, optically active crystal in which the 
normal modes are orthogonal and have ellipticity k = p/26. In order to produce a simple 
form for M in the dichroic case it is necessary to make some assumptions about the 
relative sizes of 6, E ,  p and a. When the linear birefringence is the dominant effect, we 
may ignore terms of order ( P / S ) ~  and ( u / S ) ~ .  This is the usual situation, although 
there are examples of materials and crystal directions where this is not true, in which case 
the analysis must proceed with different approximations. In the above approximation the 
quantity Q is given by 

Q = . \ /(E + - ( p  + = E + id. 
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We make the further approximation that the quantity EZ is small, so that cosh(ez) = 1 
and sinh(ez) = EZ. At this stage it is convenient to introduce a new set of parameters 
defined by the relations 

k = $p/6 k' = fa/6 A = 262 E = ~ E Z .  

Here A is the difference in phase and E the difference in amplitude between the normal 
modes after the beam has passed through the crystal. In this approximation A is due 
solely to the linear birefringence, and E to the linear dichroism. The parameters k and 
k' describe the optical rotation and circular dichroism. In the absence of linear dichroism 
k + ik' is the ellipticity of the (non-orthogonal if k' # 0) normal modes, but in a linearly 
dichroic crystal this ellipticity also depends on E, and k and k' do not have a simple 
meaning. 

Note that in the convention of Jones (1948), 6 is always positive (even for crystals 
with a negative birefringence) and hence the sign of p is given by the sign of k. 

The matrix M can now be written as 

M = e(-K-itl)z 

2.2. Calculation of the intensity trunsmitted in a PSA system 

The above form of the M matrix can be used to calculate the intensity transmitted by a 
polariser-sample-analyser system as a function of the two independent angles in such 
an arrangement. For consistency with Kobayashi these angles are called Y and 8 and 
are defined as shown in figure 4. 

The light transmitted by the polariser is elliptically polarised with ellipticity p and 
azimuth Y,  It is therefore described by the Jones vector 

I. cos Y cosp - i sin Y s inp 

Ji  = [ sin Y cosp + i cos Y sinp 

The fast axis of the crystal makes an angle Y + 8 with the x axis, and so the M matrix 
must be transformed as follows: 

M' = RT( - (Y + B))MR( - (Y + 8)) 

where R is the rotation matrix 

I. cos a -sin a [ sin a cos a 
R(a) = 

The light emerging from the crystal has a Jones vector 
J = RT(  - (Y + 8))MR( - (Y + 8))Ji. 

The analyser is fixed with its transmission axis along they axis and is assumed to transmit 
light polarised with ellipticity q. The appropriate M matrix is 

1- sin2 q 

i sin q cos q 

-i sin q cos q 

cos2 q Ma, = 
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r = r  

6819 

- - 
482 - 9 8 4  + 48Y - y 83Y - 882Y2 - $8Y3 

-Y + 3Y3 

483 + 1 2 8 2 ~  

y2 - g y 4  

4Y2 - 402Y 
- 

After the analyser, the Jones vector of the light is 

Jf = ManJ 
and the transmitted intensity is 

T(Y, 8, A ,  E ,  k ,  k ’ ,  P ,  4 )  = J f J T .  

The full expression for the transmitted intensity is extremely cumbersome, especially 
when multiple reflections are taken into account (see below) but can be derived and 
manipulated using the symbolic algebra package ‘Reduce’ (Hearn 1985), allowing us to 
investigate the properties of r over the whole angular region and for any combination 
of values of the parameters 6, E ,  p and 0. We are not therefore tied ab initio to any 
particular approximation scheme. Furthermore, we can test fitting procedures (based 
on a particular approximation) by Monte Carlo simulation using data calculated from 
the symbolic expression (with suitable noise and other errors included). 

The generalised linear least-squares method (expounded in many standard works 
such as Press et a1 (1986)) has the advantage that it can use a linear combination of non- 
linear functions, possibly of several variables; this allows us to use the same computer 
routine to make refinements using full-angle bivariate spherical trigonometric formulae, 
and also their polynomial approximations, to any degree. Expansions of increasingly 
higher degree do not necessarily mean an unmanageable number of basis functions, 
since terms can be grouped together to produce a linear function in the original number 
(say N) of unknown parameters. For example, in a full-angle formulation (in which, 
however, the smaller wave-optic parameters are linearly approximated) we can write 

sin(48 + 4Y) r = r  
cos(28 + 2Y) 

sin(2Y) 

cos( 2Y) 
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In Kobayashi’s ‘HAUP approximation’, the intensity can be expanded as a Taylor 
series as far as quadratic terms; this corresponds to Bruhat and Grivet’s plane-geometric 
approximation. The transmitted intensity can be written in matrix form as 

For a purely birefringent material, C has a particularly simple form: 

C = 0 4sin2(A/2) 0 [: : 4sin2(A’2)l 0 + 
Contours of constant intensity, at general phase, form ellipses in (Y, e ) ;  when A 
approaches the ‘singular’ values of 2nn or (2n + l)n, the ellipticity vanishes, but the 
azimuth assumes asymptotic values of 0 and tan-’(2) respectively, measured from the 
Y axis. 

It is appropriate at this point to indicate the general form of the function T(Y, 8, A, 
E ,  k ,  k ‘ ,  p ,  q )  qualitatively by computer simulation. Since the intensity is dominated by 
the contribution from the linear birefringence, it is helpful to visualise the effect of the 
other parameters as perturbations on T(Y, 8, A), the surface for a purely linearly 
birefringent material. This will serve to illuminate the algebraic discussion that follows. 

3. Qualitative description of wave-optic parameters and measurement methods by means 
of the ‘HAUP map’ 

3.1. Basic 20 intensity maps for birefringent material 

Figure 6 shows the intensity contours for the bivariate function T(Y, 8 )  (which we shall 
later refer to as a ‘HAUP map’) for a purely birefringent, non-absorbing, non-dichroic 
crystal as A, the phase difference, is varied between 0 and 2n. 

Figure 6. Intensity contours for the bivariate function T(Y, e )  for a purely birefringent, non- 
absorbing, non-dichroic crystal, as A ,  the phase difference, is varied between 0 and 2n. 
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There are two special positions, at A = 2 n n ,  and at A = (2n + 1)n. At A = 0, it is as 
if the crystal were not present, and so the map is independent of 8, and forms a vertical 
‘crossed-polars trough’. At  A = n, a more interesting singularity occurs with a trough- 
like feature lying at a gradient of -h through the centre of the map. At other values of 
A ,  a local elliptical minimum occurs, which rotates and changes ellipticity with phase. 
Our 2~ refinement method, following Kobayashi and Uesu, finds A essentially by 
observing the shape, orientation and position of this ellipse. It turns out that optical 
activity, circular dichroism and the ellipticity of the polars only perturb the position of 
this minimum. The linear dichroism, multiple reflections and other effects can disturb 
the shape and orientation. 

3.2. Characterisation of measurement methods in terms of HAUP maps 

In figure 7 the HAUP map for some general value of A is shown with Szivessy and 
Munster’s special azimuths, and Kobayashi’s eo which is seen to be the same as the 
‘minimal azimuth’. Kobayashi et a1 (1978) (following Anderson et a1 1974) monitored 
r(0,O) as a function of wavelength giving a fringe sequence, with k2 as an envelope. 
Horinaka eta1 (1980,1985), also working at the origin, gave the modulated counterpart. 

Our own approach does not depend on the location of any of the special points, but 
proceeds by a 2D least-squares fit to a grid of intensities covering the position of the 
intensity minimum. 

3.3. Distortion of the HAUP map f o r  linear birefringence at general phase difference A by 
circular effects and instrumental errors 

In figures 8-12 we show simulations of distortions that occur in the HAUP map of a 
linearly birefringent material when effects such as optical activity, circular dichroism, 
combinations of polariser and analyser errors, linear dichroism and multiple reflections 
are introduced. The + , - signs refer to a raising and lowering of the surface, and the 
arrows indicate linear or angular displacements of the 2~ intensity minimum. 

These diagrams were helpful for ascertaining optimal data collection strategies, and 
also in gaining a qualitative insight into the algebra; for instance, the fact that circular 
dichroism and instrument errors of the type p + q both occur in the expression for eo, 
the minimal azimuth, can be clearly seen in the similarity of their contour maps as 
separate effects. Errors of the type y = p - q ,  however, give a contour map of deform- 
ation that is similar to that of optical activity, which relates to the occurrence of 2k - y 
in the $,-transformed intensity in Kobayashi’s analysis. 

In each plot we show two adjacent HAUP minima (separated by a 90” rotation of the 
crystal) to show that the perturbation is not always symmetrical in these two positions; 
for example, we can use information from both settings to eliminate y (since k is 
symmetrical, and y anti-symmetrical in the two positions) without the need to exchange 
the polariser and analyser. 

The basic significance of p and q in terms of their distortion of the optical intensity 
function, and their breaking of the symmetry of r at the two crystal settings has been 
observed in a much more extreme form by Stetiu (1983) while using polaroid sheet 
analysers, 

For large data regions, we can observe the qualitative aspects of the breakdown of 
the small-angle approximation for the different optical effects. One can also see the 
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Figure 8. Optical activity. The ‘dipolar distortion’ shows the same polarity at the same 
position, corresponding to physical displacements of the intensity ellipses (indicated by 
arrows). The + and - signs indicate a raising and lowering respectively of the original 
surface. The contours of large fractional distortion lie in the centre of the map. 

breakdown in similarities; e.g. p + q and circular dichroism only give the same contour 
pattern in the small-angle region, but show different kinds of distortion and asymmetry 
between the 90” positions when the angles are much larger. This kind of information 
allows us to know more clearly when we must use a particularly small data region, or 
when we can ‘get away with’ a much larger one (in which case we can benefit from the 
higher intensities and hence shorter data collection times). We can also tell which 
parameters will be safely obtainable through non-linear optimisation of full-angle 
formulae for the intensity, the effects of which will be lost in noise as the grid size is 
increased (e.g. normal-mode ellipticity, k )  and so on. 

In most cases, the region of strongest distortion is at the centre of the map, and hence 
the use of ‘small’ data grids in the HAUP region is justified. The distortion patterns are 
‘dipolar’. In figure 12 linear dichroism shows a very different pattern (multiple reflections 
give a similar map), in which the contours of highest and lowest fractional distortion 
extend over all of (Y, 6 )  space; for these effects therefore it is not necessary to work 
within the HAUP region, with the advantage that one does not need to work at the very 
low flux levels near the origin; LD bands are likely to occur in regions of strong overall 
absorption in which we would be struggling to get realistic intensities through the 
instrument if we worked near the origin. 



Y 
Figure 9. CD. The distortion is again ‘dipolar’, and the contours of greatest fractional dis- 
tortion lie at the centre of the map. The arrows indicate a shift along the &direction of the 
intensity minimum. This shift is in opposite directions for the two crystal positions. 

Y 
Figure 1O.p + q errors. The map is very similar to that of figure 8, a fact reflected in the way 
that bothp + q and CD occur in the expression for Bo, the minimal azimuth. 
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Figure 1l.p - q errors. Distortions due to errors of the formp - q are similar in appearance 
to those from optical activity, except that these distortions are antisymmetric with respect 
to the two crystal positions. Hence the optical activity and p - q can be separated by using 
grids from both positions. 

Y 
Figure 12. LD. This plot shows the very different effects of linear dichroism (multiple 
reflections give a similar map), in which the contours of highest and lowest fractional 
distortion extend over all of (Y, 6) space. Note that the ‘quadrupolar’ symmetry of these 
distortions corresponds to a change in shape and orientation of the ellipse, but not to a 
displacement. 
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3.4. Effect of different parameters on the A trajectory of the 20 intensity minimum 

Figure 13 shows another graphical representation that has been very useful in classifying 
the effect of different wave-optic parameters. For a purely (linearly) birefringent 
material, the 2~ minimum simply rotates with phase. When optical activity is introduced, 
the minimum position develops a ‘trajectory’, showing a singularity in its coordinates at 
A = (2n + 1)n, the minimum position moving along the line 8 = -iY. 

A = O  A : O  

J J 
A = 2 n  A=2x 

Figure 13. The behaviour of the orientation and position of the global 2D intensity minimum, 
T(Y, 0 )  as the phase is varied. 

Parasitic ellipticity in the polariser and analyser produces another singularity at A = 
2nn, affecting the 8-coordinate only by an amount related to the quantityp + q ;  p - q 
works in a similar way to k ,  and circular dichroism in a similar way top + q. Hence for 
an optically active birefringent section in a ‘real’ polarimeter we see two asymptotes, 
Y = 0, and 8 = -4Y. 

We have already seen that linear dichroism distorts and rotates the intensity 
minimum; it also has a marked effect on the A trajectory. Both the Y = 0, and 8 = -+Y 
asymptotes are rotated about the origin by angles that depend on the ratio between the 
linear dichroism and the linear birefringence. 

4. Generalisation of the HAUP method 

4.1. Non-dichroic, birefringent and optically active case 

Using the matrix notation introduced in section 2, the coefficients that give the intensity 
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for this case are 

( p  + q)2  + 4 sin2(A/2)[k2 - k(p - q )  - p q ]  2(p + q )  sin A 4 sin2(A/2) 

C = -2(k - p )  sin A 4sin2(A/2) 0 [, 0 0 

This can be refined in terms of five basis functions: 

r = r  

1 

e 
r e + e  
Y 
Y2 

It can be seen that the singular orientations and shapes of the HAUP map at A = 2nn, 
and at A = (2n + 1)n arise because of the equality and dependence on A of CI3 and C22. 
The appearance of optical activity does not therefore alter these features, but rather 
introduces a displacive aspect to the singularity by means of C2* and CI2. 

4.1.1. The 8‘-coordinate system. An interesting feature of the above equation is that the 
nulling angle between crossed polars, defined by the condition 

when 8 = eo /ar/aely=o = o 
is not at 8 = 0, but at 6 = eo, where 

80 = - t ( p  + 4) c0t(A/2). 

This makes it impossible to determine the position 8 = 0 from the nulling angle. Rec- 
ognising this, Kobayashi and Uesu transformed the equation for the intensity to the so- 
called 8’-coordinate system, which has its origin at the nulling angle and can therefore be 
established experimentally. Referred to this coordinate system, the matrix of coefficients 
becomes 

y ) 2  sin2(A/2) 0 4 sin2(A/2) 

4sin2(A/2) 0 
0 0 

Here y = p - q. The original HAUP method involves first making a separate measure- 
ment to establish the 8’-coordinate system. Then, at various fixed e’, intensity readings 
as a function of Y are taken and fitted to parabolae. The minima of these parabolae lie 
on a straight line in (Y, 8 )  space, gradient and intercept of which lead to sin2(A/2) and 
2k - y .  

We, on the other hand, use an improved method whereby a grid of intensity readings 
is taken relative to arbitrary 8-coordinates and fitted by generalised linear least squares 
to a biquadratic polynomial in Y and 8. The eo transformation can then be performed 
‘automatically’, by simply transforming the 8-coordinates so that the coefficient of 8 
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becomes zero, obviating the need for a separate measurement to determine eo. This is 
a more correct procedure for two reasons. First, the answers do not hinge on a single 
measurement made to determine the position eo. Second, by refining the grid as a whole 
rather than as a series of strips proper account is taken of correlations between the 
coefficients. The refinement yields the quantities (2k - y )  sin(A) and sin2(A/2), from 
which 1 (2k - U) 1 and 1 A 1 can be derived. 

4.1.2. The y-problem. If ane i s  using a single: grid, k cannot be determined separately 
from y. One of the solutions proposed by Kabayaski and Uesu was to exchange the 
polariser and analyser, so that y becomes - y ,  and repeat the measurement. Because 
2k - y is measured, y can in principle be eliminated. However, y is very sensitive to the 
exact alignment and position of the polariser and analyser prisms, and a method involving 
such a disturbance is unworkable-as pointed out by Kobayashi et aE (1988). A more 
successful approach utilises a 'check' crystal with no optical activity to calibrate the 
instrument (Kobayashi et a1 1988). Our solution, which does not involve any disturbance 
to the instrument, is to collect another grid with the crystal rotated by 90" about the 

Ih' '- (Crystal rotated by 90' 
from Setting 1. 
k + -k 

Figure 14. The two special crystal settings of our extended HAUP method, showing the way 
that y can be eliminated from the two readings. Indicated are the loci of the minima of the 
partial derivatives of with respect to Y and 8. Also noted are the special azimuths of 
Szivessy and Munster. The geometrical significance cf terms such as (2k - y )  sin A ,  which 
occur in the Kobayashi analysis, are indicated. In the crystal setting (b) ,  the crystal has been 
rotated by 90". This effectively causes a change of sign in both the phase and the normal- 
mode ellipticity. The expressions from the first setting are therefore replaced by those found 
when A is replaced by -A ,  and k by - k .  This causes products such as (2k - y )  sin A to 
undergo an apparent sign change in y ,  which is operationally equivalent to leaving the crystal 
in the first setting but exchanging the polariser and analyser. Moving thecrystalcan, however, 
be done much more conveniently, and without any disturbance to the apparatus so long as 
the crystal microspositioning system is also capable of large and rapid movements. 
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beam direction. When the M matrix describing the crystal is appropriately transformed, 
k is replaced by -k and A by -A (the same happens to k‘ and E since this amounts 
simply to an exchange of the fast and slow directions). Since 

[2( - k) - y ]  sin( - A) = (2k + y) sin(A) 

we can again determine k and y from the two grids (HAUP maps corresponding to the 
two crystal positions are shown in figure 14). Because no disturbance of the optical 
elements is involved, this is a significant improvement over both the other methods. We 
have found that the observed value of y depends critically on the temperature of the 
prisms, which in turn depends on beam heating, ambient temperature and so on. Our 
method has the additional advantage of speed, and so the measurements can be com- 
pleted before significant temperature variation occurs. 

4.1.3. The GY-error. Kobayashi et a1 found divergences at certain values of A in their 
extracted value of 2k - y. They showed that these divergences could be explained if 
there were an error in the determination of the crossed-polar position. It was suggested 
that such an apparent ‘GY’ error could be caused by the imperfections in the prisms, and 
the surface of the sample not lying perpendicular to the beam. We have calculated the 
effect of both these suggestions. The former cannot give rise to a GY error. We have 
calculated that the latter results in a very small effect for any realistic misalignment. 
Furthermore, this effect changes sign when the crystal is rotated by 90°, and hence could 
be eliminated in the same way as y .  The simplest way for the GY-error to arise is of 
course if the motor drive for the polariser shows any drift during the course of the 
experiment. One technique we have employed with some success is to use the minimum 
of the HAUP map, for wavelengths at which A = 0, to calibrate our Y-coordinates with 
the crystal in situ-this minimum should be at Y = 0 if the GY-error is indeed only due 
to mechanical inaccuracies rather than the optical effects that Kobayashi postulated. 

If a grid is refined in the presence of a GY-error, the error in 2k - y is given by 

(2k - Ylfitted = (2k - Y) true - cot(A/2) 

and is sketched in figure 15. 

4.2. Measurements in the presence of dichroism 

4.2.1. Circular dichroism present but no linear dichroism. If the assumption that k’ = 0 
is dropped, the untransformed matrix of coefficients becomes 

( p  + 4)’ + 4 sin2(A/2)[k2 - k(p - q )  - p 4 ]  2(p + q )  sin A 4 sin2(A/2: 
-2k’(p + q)sin A -8k’ sin2(A/2) I 

4 sin2(A/2) 

0 

0 

0 

The nulling angle is now given by 

eo = - i (p  + q )  cot(A/2) + k’. 
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Figure 15. The effect of the GY-error on the refinement of the parameter 2k - y .  

The transformed matrix of coefficients is identical with that when there is no circular 
dichroism, except for the coefficient CI1 which is not used in the derivations of 2k - y and 
A. Therefore the Oo-transformation ensures that the determination of these quantities is 
unaffected by the existence of CD. To measure the CD it is necessary to use the fact that 
k' appears in the expression for Bo. However, since our 8-coordinates are arbitrary, we 
can only measure e,, which differs from Bo by an unknown additive constant which is 
independent of wavelength. Defining this constant angle as p = 8, - Bo one has 

8 e =--( p + q)  cot(A/2) + k' + 0. 
When A = (2m + 1)n(m = 0 , 1 , 2  . . . ) then 8, = k' + p. It is thereforepossiblestraight 
away to determine k' to within an additive constant at these special wavelengths, which 
in a sufficiently thick crystal can be relatively closely spaced. Furthermore, if one knows 
that the CD is zero except over a particular wavelength range (as would typically be the 
case when tracking through a CD band) it is possible to determine and hence the 
absolute magnitude of k'. 

4.2.2. Circular and linear dichroism present. If E # 0 the untransformed matrix of 
coefficients becomes 

4 sin2 (A/2) I + 4 sin2(A/2)[k2 - k ( p - q )  - p q ]  2(p + q )  sin A 

-2k' (p  + q) sin A + terms in E - 8k' sin2( A/2) 

4sin2(A/2) + 2 E  0 

k + E  0 J 0 
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r = r  

Note that C31 and C22 are no longer equal; an extra basis function is required to refine 
the phase and the linear dichroism correctly, i.e. we must use the expression 

- -  
1 

e 
e2 

Y 
YO 

Y2 
L 

decoupling the YO and the 02-terms. 
The nulling angle eo is, however, unaffected. The transformed matrix of coefficients is 

(2k - ~ ) ~ s i n ~ ( A / 2 )  0 

+other terms 

4 sin2 (A/2!, 

- (2k - y) sin A 4 sin2(A/2) + 2E 0 

-E(P + 4)  c o W 2 )  

l + E  0 0 

The €lo-transformation leaves terms involving E in the coefficients C12 and C22, thus 
affecting the determination of k and A .  This problem can be overcome as follows. It is 
easy to extract E from the transformed C,-it is simply half the difference between the 
coefficients of O2 and BY. 

E = B(C22 - C13). 
(The difference between these quantities can also be used to detect LD even when it is no 
longer small, although it is not possible then to refine out the other optical parameters.) 
However, the coefficient C12 now contains an additional term 

-E(p + 4) cot(A/2). 

In order to correct the extracted value of 2k - y for this it is necessary to know 
(p + q)cot(A/2)-in practice, this means knowing the absolute value of Bo. This can be 
achieved by the method outlined in the section on circular dichroism, i.e. by measuring 
the nulling angle 8, as a function of wavelength and producing a table of values of 
(p + q)  cot(A/2). These can then be combined with the fitted values of E at each 
wavelength to produce correct values of 2k - y. 

If a grid is refined on the false assumption that E = 0, then the fitted value of 2k - y 
is given by 

(2k - Y)fitted = (2k -  true + (P + q)E/sin2(A/2) 
as shown in figure 16. 

Hence failure to allow for LD leads to divergences in the fitted value of (2k - y )  at 
the same values of A as a ‘dY’-error, although in the former case these are even functions 
of A and in the latter they are odd. 
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Figure 16. The effect of ignoring small but significant LD on the refinement of the parameter 
2k - 7. 

Even a tiny amount of linear dichroism can have a significant effect on the intensity 
transmitted by the polarimeter. For example, consider a 1 mm thick sample of a material 
with a birefringence similar to that of quartz at a wavelength of 400 nm; this gives a value 
for the parameter 6 = (n/A)An = 70000. Even if the quantity ~ / 8  is as small as 0.001, 
then the parameter E = 0.2, which is significant, especially at certain values of A .  Any 
material showing dispersion of its birefringence is in general linearly dichroic, by virtue 
of the Kramers-Kronig relationship connecting 6 and E .  Furthermore, the presence of 
any source of anisotropic scattering, such as surface roughness, defects, strain, and the 
differential Fresnel reflection (due to the birefringence) will give rise to an effective LD 
that is not intrinsic to the pure material. The intrinsic contribution will be proportional 
to the crystal thickness and the surface contribution independent of it. Therefore two 
experiments on samples of different thickness will reveal the origins of the apparent LD. 
The effect of linear dichroism should certainly be considered even in crystals usually 
considered non-absorbing. 

4.3. Multiple reflections 
At the interfaces between the crystal and the surrounding air there is inevitably some 
reflection, even at normal incidence, because of the difference in refractive indices 
between the media. Consequently the light is reflected back and forth between the 
crystal surfaces and the emergent light should be described by the Jones vector which is 
the sum of all these reflected beams. Following Melle (1985), this can be modelled by 
replacing the matrix M by SM, where S is calculated from the reflection matrix and from 
M itself. It is important to include the multiplicative phase factor in front of M for this 
purpose. For typical values of birefringence, the main contribution to S comes from the 
mean refractive index (E), and the correction due to the birefringence is very small. It 
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x (1+2r2) 1 - ( ~ + q ) ~ + 4 s i n ~ ( A / 2 ) [ k ~ - k ( p - q )  - pq] 2(p+q)sinA 4sin2(A/2) 

-2k’(p+q)sinA+termsinE -8k‘ sin2( A/2) 

-2(k-p)sinA - 4k’ sin2(A/2) 4 sin2 (A/2) 0 

-1+ E-2r2cosA 0 0 J 

-2k’E(1 -2r2) X (1+2r2)+2E 
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is therefore sufficient to define a ‘scalar reflection parameter’ r 2 :  

The matrix SM is similar in form to M, but is modified by terms depending on even 
powers of r .  Retaining only the quadratic terms, the matrix of coefficients becomes 

Failing to include the effect of multiple reflections leads to an error in the determination 
of A given by 

{sin(A)},,,,, = {sin(A)}true vl - 4r2 cos(A). 

This in turn leads to an error in the determination of 2k - y-in the worst case of about 
8% (taking n = 1.5). As the wavelength is changed this error shows a high-frequency 
component due to the dependence of r on A. and a lower-frequency component due to 
the variation of A. The high-frequency oscillations will average to zero except in the 
very thinnest of the less strongly refringent samples. 

4.4. Application to modulated methods 

All of the above analysis may easily be extended to cover modulated techniques such as 
that of Horinaka et al. The expression for the 2w Fourier component given earlier 
becomes 

z~~ = ~ , [ ( k  - E )  - ( k 2  + o ~ ) ’ / ~  cos(S + 5‘)] sin o 

where E is an error term involving various combinations of p and q, depending on the 
exact location of the experiment in (Y, 0) space. Whatever the setting, the parasitic 
ellipticities of the polariser and analyser may be eliminated by rotating the crystal 
through 90”. If the crystal is set at the crystallographic zero azimuth, then E = p. If it is 
made to follow the minimal azimuth as the wavelength is changed (easily possible on 
our fully programmable polarimeter, to be described elsewhere), and the above equation 
is effectively &-transformed, then E = y and the CD is conveniently eliminated, as in the 
Kobayashi experiment. Furthermore, there is no reason to limit the measurements to 
the position (Y, 0 )  = (0,O) (as done by Horinaka et a1)-much useful information is to 
be found at certain ‘magic’ positions such as (0, n/4), or (0, n/8) in which the optical 
activity and birefringence can be eliminated, and quantities such as the dichroisms can 
be seen on their own. Use can be made not only of the amplitude envelopes of the 
various Fourier components, but, at certain positions, also their phase envelopes. This 
will be the subject of a further paper. 
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5. Summary of the proposed method 

(i) Set up the Y-coordinate system by making an accurate determination of the 
crossed-polar position, Y = 0. 

(ii) Insert the crystal and with Y = 0 make measurements of the 8-values of the 
nulling angles. From these it is possible to extract k ' ,  the parameter describing the 
circular dichroism, and also ( p  + q )  cot(A/2) as a function of wavelength. This relies on 
the existence of a region in which the CD is zero. 

(iii) Collect a series of grids relative to arbitrary &coordinates and fit them to 
biquadratic polynomials. Transform each grid so that the coefficient of 8 is zero and 
calculate A and E. Use the previously tabulated values for ( p  + q )  cot(A/2) in con- 
junction with E to produce correct values for 2k - y. 

(iv) Rotate the crystal by 90" and repeat (iii). Combine the results for 2k - y and 
2k + y to produce k and y separately. 
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Appendix 1. Outline of the least-squares method for refinement of the intensity surface 
re ,  e) 

(i) Transform data onto the ranges +1 in x ,  y ,  and 0-1 in z ,  the intensity values. 
(ii) Generate the weights w i  = l/a: where the standard deviation of a data point is 

calculated from the total photon count. Poisson counting statistics determine that if in 
a given time N counts are received, then the standard deviation will be N1/*. The photon 
detection system returns a count rate R ,  and counter values from which one can calculate 
an effective elapsed time (the so-called dead-time-corrected counting time, z)-hence: 

a(R) = m/-d = v/R/z'. 
(iii) If we state the least-squares problem as aa = p where a = ATA, A is the design 

matrix, a is the vector of parameters and /3 = ATb where b is the vector of weighted 
observations, then a = ct.- 'bwe form a and p in a triple summation, and sketch the 
outline of a program in pseudo-code: 

Fori = 1 to Number-oLDataPoints do 

/* evaluate the coordinates x(i), y(i), the intensity z(i) and its weight w(i) 
$( 

from the raw photon counting data 
*I 
x(i) = (raw_x(i) - bcentre)/x-halfrange 
y(i> = (raw-y(i) - y-centre)/y-halfrange 
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z(i) = (rawz(i) - zmin) / z fu l l r ange  
w(i) = I/a2(i) 

/* then evaluate the basis functions */ 

X,(x(i),y(i)) = . . . 
X2(x(i),y(i)) = . . . 

. . .  
XNumber-of-Parameters(X(i),Y(i)) = * . 

fork = 1 to Number-oLParameters do 
$( 

P(k) = P(k) + w(i)X(k)z(i) 
form = 1 to Number-oLParameters do 

a(k,m) = a(k,m) + w(i)X(k)X(m) 
$1 

$) 
/*a and P are now formed. */ 

matrixinvert( a,&’) 
matrix_multiply( a’ $, y )  /* y will now contain the parameters, 

and a’, the inverse of a, will be the 
covariance matrix for the parameters. 

*I 
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